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NEWTON-RAPHSON -CONJUGATE-GRADIENT TECHNIQUE FOR 

CALCULATION OF AXISYMMETRIC BUCKLING OF SHALLOW 

SPHERICAL SHELLS WITH VARIABLE EDGE CONSTRAINT* 

By Harry G. Schaeffer 
Langley Research Center 

SUMMARY 

The feasibility of utilizing mathematical programing techniques for determining 
stable equilibrium states of nonlinear structural  systems is explored. The physical prob
lem chosen for evaluation of this methodology was the nonlinear behavior of a shallow 
spherical shell subjected to  uniform pressure.  The procedure found most useful was a 
hybrid method consisting principally of a generalized Newton-Raphson technique with 
intermittent application of the conjugate-gradient search technique. The variation of 
buckling pressure with changes in edge restraint and shell geometry is found for a uni
formly loaded shell. 

INTRODUCTION 

In the a reas  of nonlinear mechanics and mathematical programing, significant 
progress has been made in the development of algorithms for minimizing a function of 
several  variables. Typical of problems in nonlinear mechanics for which minimization 
procedures' a r e  particularly adaptable is the determination of stable misymmetric equilib
rium states of shallow spherical shells loaded by external pressure.  This physical sys
tem exhibits the phenomenon of snap-buckling when a critical load is reached. The prob
lem of a spherical shell with both clamped and simply supported edges has received a 
great deal of attention in recent years (refs. 1to  11). References 3, 7, and 8 give 
clamped edge results,  and reference 5 gives simply supported edge results. However, 
since no research has been directed toward shells with edge constraints between these 

.

* The information presented herein was included in a thesis entitled "The Direct 
Determination of Nonlinear Displacements of Arbitrarily Supported Shallow Shells Using 
Mathematical Programing Techniques" submitted in partial fulfillment of the require
ments for the degree of Doctor of Philosophy in Engineering Mechanics, Virginia 
Polytechnic Institute, Blacksburg, Virginia, April 1967. 



two extremes, it would be of interest t o  investigate the buckling behavior for edge condi
tions which span these limits. 

Variational procedures using a set of assumed functions, such as the Ritz technique 
(ref. 12), have been popular methods for  obtaining approximate equilibrium states of both 
linear and nonlinear systems. In addition, several  investigators (refs. 13 to  16) have 
shown that an appropriate set of finite-difference equations for linear conservative sys
tems can be formulated by direct minimization of the energy function with respect to  each 
unknown nodal displacement. 

Nonlinear finite-difference equations are derived herein in a similar manner. The 
purpose of this report is to investigate the applicability of mathematical programing 
methods as a means of determining stable equilibrium states of nonlinear systems. The 
buckling result is an example of a difficult point to obtain. Several minimization algo
rithms a r e  considered, and a hybrid method centered on the generalized Newton-Raphson 
procedure is used for calculations of buckling results for the spherical shell. New 
results are presented which show the variation of the buckling pressure of spherical 
shells with changes in edge constraint. In this study only axisymmetric buckling states 
a r e  considered. 

SYMBOLS 

a radius of curvature of spherical segment 

b radius from shell axis to  edge of shell (see fig. 1) 

D bending stiffness, Et3 
12(1 - v2) 

d nondimensional bending stiffness parameter,  	-1 
12 

E Young's modulus of elasticity 

middle surface s t ra ins  

gradient of the potential function IT at X i  

maximum shell r i se  

assumed location of minimum of n(x) 

. 
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k nondimensional membrane stiffness parameter, l2($ 


kr9ke middle surface bending distortions 


I' reference length 


I? nondimensional reference length, 'i/a 


N number of real shell stations along a meridian (fig. 2) 


n number of unknowns 


-
P dimensional surface pressure 

P nondimensional surface pressure,  s/pcl 

pc1 classical buckling pressure defined in equation (5) 

Pcr axisymmetric buckling pressure corresponding to "top-of-the-knee" 
(point U in fig. 3) 

q1 ,92293 boundary restraint coefficients (spring rates) 

r radius to shell middle surface from shell axis (see fig. 1) 

S scalar,  optimum distance to  proceed in direction V i  

t shell thickness 

-
U displacement along shell meridian 


U nondimensional meridional displacement, ii/Zb 


V i  best direction to  proceed from IC: (eq. (11)) 


-
W displacement normal to shell middle surface 

W nondimensional normal displacement, V/Zb 
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X set  of all xi 

X i  set of all nodal displacements Ui,Wi 


A interval between shell stations, b/N 


5 preassigned small  number (inequality (18)) 


6ij  Kronecker delta, 6i j  = 0 for i # j; 6ij  = 1 for i = j 


i9' i*(1/2) integration factors evaluated at station i, and midway between station i 
and i i 1, respectively 

Er,�e s t ra ins  

e circumferential coordinate 

P 2  
geometric parameter for spherical shell, J12(1 - v2)b2 

at 

V Poisson's ratio 

n,ne,ns 7 %  
nondimensional total potential energy, edge force energy, surface 

force energy, strain energy, respectively 

-n dimensional potential energy 

n1,%1 nondimensional linear and nonlinear components of II, respectively 

P nondimensional radial coordinate, r/b 

52 nondimensional surface pressure,  

bw w2 nondimensional curvatures; for spherical caps wl = o2 = a1 7  

Superscripts : 

(Y,P,Y denote sequence number in iterative procedures 

Pr imes indicate differentiation with respect to  the nondimensional radial 
coordinate p. 
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POTENTIAL ENERGY FOR A SHALLOW SPHERTCAL SHELL 

The shell geometry is shown in figure 1. The shape is taken t o  be a shallow 
spherical cap. The she l lPas  a thickness t and a spherical radius of curvature a. 
The displacements 3 and 7 are shownpositive. The displacements 6 and 7 and 
the slope G/ar may be elastically restrained at the shell boundary. The loading is an 
axisymmetric surface pressure 5 normal to the shell midsurface and positive outward. 
This pressure may vary along the meridian. 

The total potential energy of the shell 11 is composed of the s t ra in  energy nu, 
the energy of the external surface pressure Us,and the energy of boundary con
straints ne: 

II = llu + IIS + ne (1) 

In equation (1)the potential energy is nondimensional and a bar  indicates a dimensional 
quantity where 

The strain energy for a shallow spherical cap is (ref. 17) 

nu = s,'f(e: + e: + 2ve + ke2 + 2vkrke]p dp 

where the strains and bending distortions are 

e, = wlw -tu' + -(wO; 2 l  
ee = w2w - UP (3) 
kr = -w" 

-W'kg = -
P J 

and where the nondimensional radius, displacements, curvatures, and stiffnesses are 
given by 

5 
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w1 = w2 = b 

The potential energy for a uniform surface pressure 6 on the shell is 
1 

ns = -2 loslwp dp 

where 

and 
p = - P 

pc1 

The classical buckling pressure pcl for a complete spherical shell is 

pcl = a2i-
4Et (5) 

The potential energy for the arbitrary edge constraints (linear springs) integrated 
about the circumference at p = 1 is 

where ql ,  q2, and q3 a r e  meridional, normal, and rotational nondimensional spring 
constants at the boundary. The subscript b denotes the subscripted quantity at the 
boundary p = 1. 

The total potential energy from equations (l),(2), (4), and (6) is 

n = Jol(k (plw+ u’ + -(w’)23”b up)” + 2 v  [wlw +u’  + -(w’)2I(w
2
w - 

2 + w w - - 2 $ 

It is necessary to approximate equation (7)by a finite number of unknowns. This 
is accomplished in the present investigation by approximating the continuous functions 
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(u,w) and the shell properties at N discrete stations along the meridian of the shell. 
These discrete stations are shown in figure 2. The radial interval between stations A 
is taken to be a constant, and the off-shell station N + 1 is added to  allow the evalua
tion of derivatives at station N. 

For  convenience the numerical approximation of the potential function for  the 
shallow spherical cap is written as . 

n = n 1 +  l-Id 

where involves t e rms  in (u,w) of second degree and lower and nnl involves t e rms  
greater than second degree. Approximation of definite integrals by trapezoidal summa
tions and the use of consistent numerical approximations for  derivatives give the fol
lowing expressions for II1 and nnl: 

An advantage of the potential-energy approach is that only geometric conditions are 
required at the pole, whereas procedures based on approximating the differential equa
tions by finite differences require a shear condition also. These geometric conditions 
are imposed pr ior  to  minimizing the potential-energy function and require only that clo
sure conditions specified at the pole insure finiteness of strain. Thus, the expressions 
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for the circumferential midplane strain 60 and the midplane bending curvature ke 
(eqs. (3)) yield the conditions at p = 0, u(0) = 0, and w'(0) = 0. 

FUNCTION MINIMIZATION 

Computational Procedure 

At this point it is necessary to set up an algorithm to perform the minimization of 
the energy (as given by eq. (8)), which may be identified as the object function rI. A 
computational procedure was chosen here on the basis that it might be applied to some 
general functional for many classes of problems involving a large number of variables 
where round-off e r ro r  might be an important consideration and where maximums and 
inflection points may exist near the desired minimum. 

Sequential search methods of minimization (refs. 18 to 27) were considered because 
such methods are quadratically convergent. The Newton-Ftaphson procedure, which 
utilizes both first and second derivatives, was considered and would have been used 
exclusively except that this method cannot be guaranteed always to tend toward a minimum. 
This deficiency will be discussed further in a subsequent section. The steepest-descent 
(ref. 20), variable-metric (refs. 24 and 25) ,and conjugate-gradient methods all appeared 
advantageous since only first derivatives of the object function were required. The 
steepest-descent method was ruled out since it is known to exhibit poor convergence char
acteristics for certain classes of problems (ref. 20). The variable-metric method 
requires storage and manipulation of a matrix and therefore is not suited to problems 
involving a large number of variables. The conjugate-gradient technique was the most 
advantageous method (after the Newton-Raphson procedure) but could not be used exclu
sively since the convergence characteristics of this method appear to be adversely affected 
by round-off e r ro r  (see, also, refs. 21 and 26). 

The linear axisymmetric behavior of a uniformly loaded circular plate was obtained 
in a sample calculation in which the plate was approximated by 22 unknowns. Since the 
potential function for this problem is quadratic, the conjugate-gradient method should con
verge in 22 iterations. For the plate example, however, approximately 400 iterations were 
required for single-precision calculations (8 digits) and 40 iterations for double-precision 
calculations (16 digits). This example shows the strong influence of round-off e r ro r  on the 
results and ruled out the pure conjugate-gradient method for use in minimization of the 
potential function. 

Thus, the minimization technique finally chosen was that of utilizing primarily the 
Newton-Raphson method but incorporating the conjugate-gradient method when the Newton-
Raphson method failed to move toward a minimum point. This method, which will now be 
described in some'detail, was used in this investigation to  determine the buckling pressure 
of shallow spherical shells subjected to external pressure. 

* 

it 
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In both the Newton-Raphson and the conjugate-gradient methods, a new approxima
tion of a dependent variable x is given in terms of the present approximation in the 
following form: 

x;+1= x; + s"vp (11) 

where the superscript a! denotes the iteration number. 

* 	 The vector vg  represents the best direction to proceed from xp,where xia! 

represents a point in an n-dimensional space and n is the number of unknowns. The 
scalar sa! represents an optimum distance to  be traversed from xp in the direc

t 

tion v;. Here xi is the set of all nodal variables associated with u and w. Equa
1 2tion (11) is to  be used to generate a sequence of points xi ,  xi, . . ., xia!, xia!+1 sub

ject to the condition that 

n(xa+l) c n(x'Y) (12) 

Newton-Raphson Procedure 

The algorithm selected to perform the minimization was a generalized Newton-
Raphson procedure (ref. 18). This method utilizes both first and second derivatives of 
the object function ll and assumes that II(x) and the first two derivatives are con
tinuous. The use of this method for the expansion of n(x) at the point X i  = xp  leads 
to the following expression where terms higher than the second order are neglected: 

Since a necessary condition for a relative minimum is that the gradient of II(x) vanish, 
it follows that 

where terms greater than the first degree in X i  have been dropped and where 

e? = ha! - x.a! 
J ~ J (15) 

is the e r ro r  vector corresponding to the difference between the minimum point hf and 
J" xa! Since the quanties -an and 

aXi aXj 
are known at x?, the e r r o r  vector ea! can 

I '  ki I j 

be found by the matrix inverse as follows: 
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The derivative te rms  on the right-hand side of equation (16)are presented for the object 
function ll as given in the appendix. For this problem the matrix to be inverted on the 
right-hand side of equation (16)is symmetric and has a narrow band.of nonzero terms. 
The e r r o r  vector ef is therefore obtained conveniently from equation (14) using 
Gaussian elimination. 

Once the e r r o r  vector e: is calculated, then the new approximation becomes 

This sequence of calculations (eqs. (16)and (17))is repeated until 
I I t  

where ‘s is a preassigned small  number. When inequality (18)is satisfied, then the 
procedure has presumably converged to the solution hj where 

a+lhj = X.
J 

The generalized Newton-Raphson procedure has a drawback in that inequality (12) 
is not necessarily satisfied. The solution may tend toward a maximum o r  stationary 
point rather than a minimum. A check is made after each iteration to insure that inequal
ity (12)has been satisfied. When the test fails and inequality (12)is not satisfied, then a 
new starting point which guarantees a move toward a minimum is required. A conjugate-
gradient technique was selected for  the restart toward a minimum. 

Restart by Conjugate-Gradient Method 

Assume that at some iteration number ( p  + 1) the inequality (12)is not satisfied and 
that xf is the last approximation satisfying the inequality (12). By the conjugate-
gradient method (refs. 20 to 23) the unknown vector vf,  required in equation (ll), is 
given by 

I 


The distance sp in the direction vf is given by 

3@? = 0+ s”f) 
asp 

From equation (11), 
xB+1= xiP + s vi 
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For subsequent iterations by this method, 

where 

8 and sy is given by equation (20) with /3 'replaced by y. Each iteration leads to  a new 
. .. 

approximation x ~ + 1from equation (11). 

Only a few cycles are usually required to satisfy inequality (12), and then the 
Newton-Raphson procedure can be resumed. 

APPLICATION TO BUCKLING OF SPHERICAL SHELL 

The pressure-deflection curve for a uniformly loaded shallow shell has the general 
form shown in figure 3 (see, e.g., ref. 8). The buckling pressure pcr is defined as the 
pressure corresponding to  point U on the curve. This curve OULN is representative 
of those shells for which p2 > 11, where p2 is defined as 

Very shallow shells (p2 < 11) a r e  of no interest since the curve OULN increases mono
tonically and there  is no definable top-of-the-knee. 

In the prebuckled range, the Newton-Raphson procedure converges rapidly when 
the linear solution is used as the initial-state point. In the region of interest for  
buckling pressures,  that is, near point U, convergence difficulties may occur when the 
Newton-Raphson procedure alone is used and when the most recent converged-state point 
o r  the linear solution is used as an initial state. For pressures  greater than that asso
ciated with point U with a similar assumed initial state, the Newton-Raphson procedure 
will not converge. In the region of interest approaching point U a restart by the conjugate-
gradient method needs to  be applied. 

Two convergence tests are made in the application of the Newton-Raphson procedure. 
The first (inequality (12)) determines that the function is being minimized and the second 
(inequality (18))determines the location of the minimum to an acceptable degree of accu
racy. In this study 's was taken as 0.05. 

I1 
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If inequality (12) is not satisfied after a prescribed number of restarts of the 
Newton-Raphson-conjugate-gradient procedure, the pressure  increment is reduced and 
the procedure is again applied. If two successive reductions of the pressure increment 
do not lead to convergence, by satisfying inequality (12), then it is assumed that the 
pressure associated with the last converged result is the buckling pressure.  In the pres
ent investigation the new pressure increment is taken as 1/5 of the current pressure 
increment so that the buckling pressure is found to  within O.O25Ap, where Ap is the 
magnitude of the pressure increment. When the Newton-Raphson procedure is reini
tiated after reducing the pressure increment, the last converged solution is used as an 
initial approximation of the location of the minimum. 

EFFECT O F  EDGE CONSTRAINTS ON THE AXISYMMETRIC 

BUCKLING OF A SPHERICAL SHELL 

The minimization procedure and resulting computer program 'were used to study 
the influence of arbi t rary edge constraints on the axisymmetric buckling pressure of a 
spherical cap. Comparisons are made between present results and those of previous 
investigators. For the present investigation, 10 finite-difference increments were used 
along a shell meridian together with the following parameter values: 

.2 = 0.1 

b/t = 100 

q2 = 105 

where the value of q2 is essentially large enough to constrain normal edge displacement. 

The variation of the axisymmetric buckling pressure with shell parameter p for 
clamped and simply supported edges was obtained for comparison with results presented 
by other investigators as an evaluation of the minimization procedure. (For example, 
see ref. 8 for clamped results and ref. 28 for simply supported results.) The results 
are shown in figure 4 where it is seen that buckling pressures  as determined by the pro
cedure a r e  in good agreement with the results of the two references indicated by the solid 
symbols, The slight variations may be due to  differences in finite-difference spacings 
and other approximations in the various numerical procedures. Here the values of the 
rotational spring constant q3 was taken as lo5 to approximate completely constrained 
edge rotation and as 0 for the simply supported edge. 

Meridional Edge Restraint . 

Results were also obtained for variations in meridional restraint as well as rota
tional restraints. Results were limited to values of p 5 6 since it has been shown that 

12 
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for p > 6 ,  asymmetric buckling governs (ref. 29). To determine the influence of merid
ional restraint on the buckling behavior of shallow spherical shells, plots of the buckling 
pressure pcr for various values of the in-plane restraint parameter q1 are shown in 
figure 5 for geometric shell parameters ,u of 4, 5, and 6. The calculations were car
ried out for a shallow spherical cap with the edge essentially fully restrained against 
rotation (q3 = lo5). The plots show that the buckling pressure is essentially insensitive 

I 	 to the in-plane restraint at the extreme regions of meridional restraint  (ql < lo3 and 
q1 > lo7). Between these extremes the buckling pressure increases monotonically with 
an increase in in-plane restraint. 

I 

From the above results an estimate can be made of the size of an edge ring of solid 
circular cross  section which would be required to  approximate a rigid restraint to merid
ional displacement. By assuming that q1 = lo7 and that the ring and shell are made of 
the same material, it is found that a relatively large ring cross-sectional radius of 
approximately 50t is required, where t is the thickness of the shell. 

Rotational Edge Restraint 

Calculations were aIso made to determine the influence of rotational restraint on 
the buckling behavior of shallow spherical shells. Plots of the buckling pressure pcr
for various values of the rotational restraint parameter q3 are shown in figure 6 for 
geometric parameters ,u of 4, 5, and 6. The calculations were carried out for a shal
low spherical cap with the meridional edge displacement essentially fully restrained 
(ql = 107). The plots show that the buckling pressure is essentially insensitive to  the 
rotational restraint for the extreme regions of plot (q3 < 0.01 and q3 > lo3). Between 
these extremes the character of the variation of buckling pressure with a change in the 
rotational restraint parameter is dependent on the value of the geometric shell 
parameter p. 

Figure 6 shows two effects which are of interest. First, that for p = 5 and 6 a 
peak in the' pcr curve occurs between the extremes of edge conditions, that is, clamped 
(q3 > 103) and simply supported (q3 < 0.01). Second, that for p = 4 and 5 the buckling 
pressure for the simply supported edge condition is greater than the buckling pressure 
for the clamped edge condition. Although the first effect was unexpected, it can be cor

b 	 related to  some degree with changes in the normal deflection mode shapes. The mode 
shapes just pr ior  to buckling were calculated for several combinations of the parameters. 
The results are shown in figures 7(a), 7(b), and 7(c) for  geometric shell parameters ,u 
of 4, 5, and 6, respectively, and for values of the rotational restraint parameter q3 
associated with the simply supported and clamped edge conditions. In figures 7(b) 
and 7(c), the modes associated with values of the rotational restraint parameter just 
pr ior  to  and just after the peak in pcr are also included. It is seen that the simply 
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supported (q3 = 0) buckling mode changes between p = 4 and p = 5 and that the 
clamped (q3 = 105) buckling mode changes between p = 5 and p = 6. 

With regard to the second effect shown in figure 6,  other investigators have noted 
that the spherical shell with a simply supported edge has a higher buckling pressure than 
the same shell with a clamped edge (e.g., ref. 30). The increase in buckling pressure 
was attributed to dynamic effects in reference 30, whereas the results of the present 
investigation show that the increase occurs statically and is associated with the buckling 
mode. Perhaps in this range the buckling pressure for  the simply supported edge would 
be lower than for the clamped edge if asymmetric buckling were included in the study. 

The explanation for the peak in the variation in buckling pressure with rotational 
restraint is not apparent. It does appear, however, that the results are not unreasonable 
in view of the variation of buckling pressure with p shown in figure 4. The very sharp 
peak shown in figure 6 for p = 5 is evidently related to the fact that the mode shape for 
the clamped edge has one half-wave whereas the mode shape for the simply supported 
edge has the character of 3 half-waves. 

The size of an edge ring of solid circular cross  section required to approximate a 
rigid rotational restraint (q3 > 103) has been calculated. A ring radius of approximately 
lot is equivalent to q3 = 103, where the ring and shell a r e  made of the same material, 
This is considerably smaller than the ring radius of approximately 50t required to simu
late a rigid restraint to  meridional displacement. Thus, in the design of a supporting 
ring to simulate clamped edge conditions, the meridional restraint is the controlling 
factor. 

CONCLUDING REMARKS 

A direct minimization of an object function was used to demonstrate that for non
linear static structural problems, stable equilibrium states can be determined numeri
cally. The method developed was applied to  determine the "top-of-the-knee" buckling 
pressures  of shallow spherical shells with various edge restraints. In this case the 
object function was the potential energy of the system. 

Several mathematical programing techniques were evaluated. These techniques 
included steepest-descent, conjugate-gradient, variable-metric and generalized Newton-
Raphson methods. It was found that the procedure most appropriate for this class of 
problems is a hybrid method composed primarily of a generalized Newton-Raphson pro
cedure with selected applications of the conjugate-gradient method. 

This computational procedure was chosen here on the basis that it might be applied 
to some general functional for many classes of problems involving a large number of 
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variables where round-off e r r o r  might be an important consideration and where maxi
mum and inflection points may exist near the desired minimum. 

The procedure has been used to  study the influences of a wide range of rotational 
and meridional boundary restraint on the axisymmetric buckling of a shallow spherical 
cap subjected to  a uniformly distributed pressure.  The variations of buckling pressure 
with changes in in-plane and rotational edge restraint for uniformly loaded shells for 
several  values of the geometric shell parameter p show that for p 2 5, partial rota
tional restraint can yield higher buckling pressures  than for either clamped o r  simply 
supported edges. It was also found that a very large value of meridional in-plane st i f f 
ness was required in order  to  approach the greater strength corresponding to the com
pletely restrained condition. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., December 4, 1969. 
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APPENDIX 

DERIVATIVES OF SHALLOW-SHELL POTENTIAL FUNCTION 

The first and second derivatives of the potential function, equation (8), which are 
required in the Newton-Raphson minimization procedure are found by differentiation of 
the potential with respect to  the nodal displacements. 

Gradients 

Differentiation of the linear potential IIl with respect to  ui and wi leads to 
the following gradient components : 

93 
+ 2q2wN-16i,N-1 + T(wN6i ,N  - wN-26i,N-2) 

( i =  1, 2 ,  . . . , N  + 1) (AI) 
r 

( i  = 1, 2, . . .,N + 1) (m) 
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APPENDIX 

where e i  and E i+(1/21 are integrating factors having values as follows: 
. . 

'N+(1/2) = 

'i+(1/2) = A (i = 1, 2, . . .,N) 

E .
1 

= A  (i = 2, 3, . . .,N - 1) 

E l  = 0 

'N+l= 
A 

% = z 
and N is the number of stations on the shell. An off-shell station N + 1 is considered 
so that the derivative of (u,w) may be evaluated at the edge. The quantity 6ij is the 
Kronecker delta and is defined as follows: 

(i f j) 
6ij = C (i = j )  

In a similar manner contribution of the nonlinear potential to  the gradient compo
nents is as follows: 
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where i = 1, 2, . . .,N + 1. 

Second Derivative of the Potential Function 

The differentiation of the gradient components with respect to  nodal displacements 
leads to the following expressions for second derivatives of Ill: 

64 
+ di.l($ + "3) + 2i36i,N-1 z ( 6 i , N  - 6i,N-2)

Pi- 1 

a2nl - 2di+l 

hi hi+2 A4 
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where 

Similarly, the second derivatives of the nonlinear potential IInl a r e  as follows: 
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where i = 1, 2 ,  . . .,N + 1. 
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Figure 1.- Cross section of shallow spherical shell. 
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Figure 2.- Meridian of shallow spherical shell showing location of f inite-difference stations. 
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Figure 3.- Typical pressure-deflection curve for a un i formly loaded spherical shell. 
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Figure 4.- Axisymmetric buckling pressure pcr as funct ion of shell geometric parameter p for shallow spherical shel l  
wi th clamped and simply supported edges. 
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Figure 5.- Axisymmetric buckling pressure pcr as function of in-plane restraint q1 for various values of geometric 
shell parameter p. q2 = q3 = 16. 
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Figure 6.- Axisymmetric buckling pressure pcr as function of rotational restraint q3 for various values of geometric 
shell parameter p. q1 = lo7; q2 = lo5. 
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Figure 7.- Normal deflection as funct ion of radial distance for various values of shel l  parameter p. q1 = IO7: q2 = 16. 
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